History Of Mathematics Essay

Mathematics is a certain way of thinking and doing that has been around since the dawn of humanity. Mathematics as a whole can be seen through history as a steady evolution, starting from simple hand calculations to modern-day computing machinery.

Mathematics allows people to understand not only what’s happening in the world but also why these things are happening. Mathematics has helped humanity to understand the laws of nature, predict where certain places are on Earth, travel into space and new worlds, estimate population size, track economies, etc. Mathematics is an integral part of human life – without it society would be all but lost.

Math was first used by humans as a system for counting things they wanted or needed. They started with simple things, like how many eggs are in a nest or how many fish are in a pond. Mathematics developed quickly to give us knowledge of geometry and measure the world around us. Mathematics was used to make advancements in astronomy; using math, we were able to calculate Earth’s circumference (Eratosthenes), create star catalogues (Hipparchus and Ptolemy), predict eclipses (Eudoxus and Calliphenes). Mathematics also helped us create calendars, which we use to this day.

The next step for Mathematics was during the Renaissance period with people like Fibonacci and Descartes. This is where the base of Mathematics as we know it today was laid. Mathematics became for the first time a discipline independent of astronomy and physics, having its own rules and proofs. Mathematics continued to be developed with mathematicians like Newton and Euler and then Mathematics finally reached what we know as ‘modern Mathematics’.

The history of Mathematics is an interesting topic that can be looked at from many different points of view. Mathematics has been used for thousands of years and, when Mathematics is so integral in all our lives, Mathematics’ history is important in understanding how we got to where we are today.

Mathematics, therefore, has become the basic tool of physical science and must be included in the social sciences. Mathematics is also indispensable in many forms of human endeavor (e.g., music, philosophy) that would not ordinarily be classed as scientific.

Mathematics has its roots in counting, calculation, measurement, and the formulation of quantitative laws. Mathematics is used in the study of all branches of the physical sciences, biological sciences, earth sciences, and social sciences; to solve problems in pure and applied arts; to formulate the rules governing games, sports, and gambling; to devise coding systems for transmitting messages or storing information; to carry out actuarial computations for insurance companies; and so on. Mathematics has made possible human progress by furnishing means for dealing with natural phenomena in ways that are precise rather than intuitively apparent.

The word mathematics comes from mathesis , a form of address derived from muses (Gr., “the patron goddesses of creative arts”), thus meaning literally “that which is learned.” The Greeks called mathematics, or sometimes “philosophy,” “the knowledge of things that are,” and the division of the quadrivium (arithmetic, geometry, astronomy, and music) recognized by ancient scholars may be interpreted as a classification of all branches of knowledge.

Mathematics is distinguished from other sciences in several ways: mathematicians seek to know pure truth without considering its application; mathematicians seek necessary truths whereas other scientists seek empirical laws; mathematics studies abstract patterns whereas science concerns itself with concrete objects.

The history of Mathematics can be seen as an ever-increasing series of abstractions. The earliest methods by which man obtained a measure for a quantity were based only on the properties of concrete objects such as a string or a stick. A length was determined by using the human body as the standard unit of measure. Only by degrees did man progress to the invention of simple tools such as the divided segment, marked stick, and marked pebble.

In Mathematics, history is important. Mathematics as a whole would not exist without history. Mathematics is the study of numbers and figures as far as we know it today.

Rigorous mathematics as it exists now was started in India by Aryabhata I, who lived from 476-550 CE . He introduced zero to mathematics and he attempted to solve quadratic equations. From India, mathematics went to China where it flourished until around 1200 A.D., when a general disinterest in Chinese Mathematics caused it to decline until its re-discovery during the Renaissance Period.

The first Mathematics book was written was by Euclid of Alexandria around 300 B.C.. In this book The Elements, Euclid set out to prove Pythagoras’ Theorem of right triangles by using a process known as deductive reasoning, or proof.

Only two other Mathematics books were written after this for about 1000 years – one by Al-Khowarizmi and one by Plato of Alexandria.

In 1400 A.D., Mathematics was brought to Europe from Africa by the Moors when they invaded Spain. It remained in Spain until 1492, then it spread throughout Western Europe. In 1545 A.D., Francois Viete wrote on imaginary numbers, which were a major focus of Mathematics at the time, Blaise Pascal had his first thoughts on what is now known as infinitesimal calculus in 1644 A.D.. Three years later, John Wallis published works on calculus, and this is the first known works on calculus. In 1665 Isaac Newton published his work on infinitesimal calculus, which was a major advancement from Pascal’s work.

In 1748 A.D., Mathematics took a big step forward when Leonard Euler’s Seven Bridges of Königsberg Problem was solved. This problem involving walking over bridges to cross rivers with different numbers of arches had been around since the mid-1700s. Leonhard Euler set out to solve it through real analysis by looking at what shapes were possible for traversing each bridge only once. He found that one shape worked for all seven bridges and proposed a solution in 1736 A.D.. His solution used something now called graph theory, which is the study of points that are joined by lines. Graph theory may sound familiar because it plays an important role in Mathematics today, but this was just the beginning.

Besides Mathematics becoming more general in its study, to include all possible Mathematics, Mathematics also became much more abstracted away from real-world problems and examples. This abstraction began in 1854 A.D., when George Boole published his work on symbolic logic. His work introduced numbers called 0 and 1 along with logical operators for not ( ), and ( & ) along with parentheses, making expressions like ((A & B) | ~C), which would be read as “A and B or C”. This system turned out to be very useful for Mathematics later.

Leave a Comment